> 探索未知 > 未解之谜 > 生命、宇宙、万物——42个未解之谜
生命、宇宙、万物——42个未解之谜
作者:原理
2025-02-11
135
管理

42,这个数字对于许多人而言并不陌生。根据道格拉斯·亚当斯(Douglas Adams)在他的科幻作品《银河系漫游指南》一书中的描述,生命、宇宙、万物的终极答案便是42。但42究竟诠释着什么?至少在这里,它意味着42个通往真理的基本大问题:从宇宙学常数问题,到时空和量子场的起源,再到生命和意识之谜。

I. 超越标准模型篇

上个世纪,物理学家经过了几十年的努力发展出了粒子物理学的标准模型,描述了自然界中的三种基本力(电磁力、弱核力和强核力)和基本粒子(夸克、电子等),两个量子场论是它的核心。量子电动力学(QED)描述了光与物质间的相互作用,并和弱核力统一成电弱力。量子色动力学(QCD)则是描述强核力的一个理论。2012年,标准模型迎来了巅峰,希格斯玻色子的发现最终填补了标准模型的最后一块拼图。然而,我们知道它并不是一个终极理论。标准模型没有包括引力,也无法解释中微子为什么有质量等其他问题。因此,多年来物理学家一直致力于寻找超越标准模型的新物理。

1. 夸克和轻子是最基本的吗?

为什么世间的万物都有着一些共同的性质?人们很快就意识到,物质其实都是由自然界的一些基本单元构成的。所谓的基本单元是指不能再由更小的物质构成的单元。经历了千年的探索,我们在实验中发现了原子、质子、中子、电子和夸克。现在我们知道,电子(与μ子和τ子被称为轻子)和夸克(共有六种)是不可再分割的。但是,鉴于过去的经历,我们不得不怀疑它们真的是最基本的吗?或许它们是由更小的先子(preon)组成的?又或者它们正如弦理论所预言的那样是由只有普朗克长度大小的弦构成的?

○ 我们一般认为物质和反物质是不同的,就像天使与恶魔。但是马约拉纳中微子却同时是天使与恶魔。| 图片来源:Fermilab Today

5. 等级问题和超对称

为什么标准模型中的基本粒子的质量要比普朗克质量小那么多?这个问题就是所谓的“等级问题”。我们似乎可以说粒子物理学是一个等级森严的领域。四种基本力的强度悬殊,从强到弱(即从强核力到引力)形成等级。物理学中的不同质量也形成等级,最顶层的是普朗克质量,最底层的就是真空能量。

如果从第一原理预测标准模型的粒子的质量,它们的质量应当约为普朗克质量,大概在能量10^19GeV。但问题是,这比宇宙中已被探测到的质量最大的粒子都要高出17个数量级。特别是希格斯玻色子,它的质量应该非常大,因为它跟如此多的粒子相互作用。

而我们现在已经知道,希格斯玻色子的质量只有125GeV,这跟普朗克能量尺度相差十几个数量级,而不是理论所期待的在同一个等级。因此,我们要问,为什么粒子的质量是我们现在观测到的质量,而不是接近普朗克质量?最优美的一个解决方法是存在一个额外的对称,可以抵消所有普朗克尺度的贡献,使粒子的质量要比普朗克质量低的多。

这就是“超对称”理论背后的想法。超对称做了一个非常大胆的预言:所有的费米子(比如夸克和电子)都有一个玻色子的超对称伙伴,以及所有的玻色子(比如光子,胶子)都有相应的费米子超对称伙伴。在许多超对称理论中,最轻的超对称粒子是一种不带电、稳定的粒子,称为中轻微子。如果找到这些粒子,也可以解释暗物质的问题。虽然超对称理论备受喜爱,但多年来在粒子加速器都没有发现它们,而它们早应该被找到。

○ CPT对称性。| 图片来源:Chad Ozel

9. 我们的宇宙稳定吗?

希格斯玻色子具有特殊的质量,其值意味着希格斯势里的基本自耦合参数:

○ 通往量子引力理论的所有可能路径。| 图片来源:https://arxiv.org/pdf/1708.07445.pdf

11. 黑洞的熵和温度的起源是什么?

自约翰·惠勒提出“黑洞”一词后,科学家、科幻家、小说家等就没有停止过对它的想象。它不仅仅只是理论上的产物,大量天文观测都证实了恒星级黑洞和超大质量黑洞的存在。2018年,黑洞也将迎来历史性的一刻,我们即将看到它的第一张照片!

一直以来,黑洞都是滋生悖论的温床。上个世纪,贝肯斯坦(Jacob Bekenstein)和霍金(Stephen Hawking)提出了黑洞熵和辐射的概念后,争论就从没有停止过。霍金和索恩(Kip Thorne)也为此有过好几次著名的打赌。到目前为止,都是索恩获胜(他还获得了2017年的诺贝尔物理学奖)。贝肯斯坦-霍金熵的公式为

霍金温度定义为

○ 爱因斯坦为了描述静态的宇宙在场方程中引入了宇宙学常数(Λ)。事实上,宇宙学常数有两种方式可以出现在场方程中,在左边时它充当了几何项,而在右边时它则充当了真空中的能量密度。

根据量子力学,真空本身会有微小的涨落,这些涨落会产生能量。物理学家认为量子真空能量可以充当宇宙学常数的角色。但是,基于量子力学计算的真空能量的值远高于实际观测到的能量密度——高出120个数量级,这个结果被惊叹为“物理学史上最糟糕的理论预测”。这便是宇宙学常数问题[4]。物理学家提出了多重宇宙和人择原理(进一步讨论可参考问题21)等模型来解决理论和观测之间的偏差,但目前并没有统一的意见。

14. 什么是暗能量?

1998年,两个独立的天文小组通过对遥远的超新星爆发的测量得出了一个惊人的结论:宇宙正在加速膨胀!科学家把造成加速膨胀的幕后推手称为“暗能量”。暗能量占据了宇宙总质量和能量的68.3%,它支配着宇宙的终极命运。

但究竟什么是暗能量?在这个问题上,科学家耗费了大量的笔墨和实验观测,一个最简单的解释或许是暗能量就是宇宙学常数,但如上述,我们遇到了问题。也有人提出一些具有奇异性质的粒子能够充当暗能量的角色,比如变色龙粒子,它的性质会随着周围的环境而改变。又或许宇宙中存着一种微弱且长程的第五种基本力,它会抵消掉一点引力的作用。当然,也有一些物理学家认为根本不存在暗能量,只是现有的引力理论需要得到修正。(在2017年发现的双中子星合并中,有一些试图修正引力的理论已经被否定。)虽然有许多的理论被提出,但暗能量依旧保持着它的神秘。

○ 左边:巨大的星系团之所以能够束缚在一起是因为暗物质提供了额外的引力。在星系团中的暗物质粒子的运动比较随机。右边:单独星系也需要额外的力才能维持,否则星系早就分崩离析。但是普通的暗物质模型无法完美地解释这个力。一个稠密的星系晕中的暗物质可以被凝聚成超流体。而这个超流体可以提供额外的力。| 图片来源:Lucy Reading-Ikkanda

18. 宇宙中还有哪些新的天体等待被发现?

宇宙中遍布中许多不同类型的奇异物体。在我们熟悉的普通恒星内部,辐射压和引力的完美对抗,防止它进一步坍缩。而在白矮星中所发生的事情则更有意思,它是由电子的“简并压”所支撑着。类似地,恒星死亡后另一个结局——中子星,则是由中子简并压支撑。1967年,Jocelyn Bell Burnell发现了快速旋转的中子星——脉冲星。此外,宇宙中也有许多恒星级黑洞,天文学家通过黑洞周围的吸积盘辐射出的X-射线对它们进行观测。而超大质量黑洞被认为普遍存在于大型星系的中心。宇宙中也充满了不同的粒子和辐射,它们都有着不同的起源。

基于过去几十年天文观测带来的惊喜,我们完全有理由期待未来会发现更多令人意想不到的天体。例如,天文学家还没有在宇宙早期形成的第三星族星,它们几乎完全由氢气和氦气构成。又比如Katherine Freese提出来的“暗星”,或者由夸克组成的“夸克星”,或以暗物质湮灭做为能量来源的天体(而不是核反应)。未来,天体物理学充满了无限的可能性。

III. 大问题篇

额外维度、多重宇宙、时间旅行等等听起来像是从科幻小说出才会出现的概念,事实上一直是前沿理论研究的对象。有些人认为我们永远也无法在实验室中检验这些理论,乐观主义者则认为,只要有足够的时间和资源,我们将最终得到令人满意的答案。

19. 时空之谜

亨利·庞加莱曾经说过:“三维语言看起来比四维更加适合用来描述我们的世界。” 在1917年时,物理学家保罗·埃伦费斯特(Paul Ehrenfest)也曾写过一篇富有启发性的论文[5]。在文章中他枚举了许多证据证明三维是描述我们这个世界最完美的维度。如果再加上时间维度,就是我们熟悉的四维时空。但是时空真的只有四维吗?如果是,为什么恰好是四维的?一个真正令人满意的理论应该能够提供一个合理的(非人择的)解释。另外,我们也想要解释为什么时间只有一个坐标?

还有一个深刻的问题是,时空的起源是什么?有一些理论推测,或许我们可以从一些更基本的框架中推导出时空。或许时空是从一些更深层次的量子现象中产生的,那么时空的量子本质是什么?全息原理、Amplituhedron、量子泡沫都尝试回答这个问题,但至今还没有出现过令人信服的结果。

○ 六维的卡拉比-丘空间,正是超弦理论所需要的额外维。| 图片来源:Jeff Bryant

如果存在额外维度,那么接下来更深层的问题就是我们宇宙内部空间的结构。自然规律大概是由这个结构决定的,所以不同的内部空间会对应不同的宇宙:内部空间本质上就是宇宙的基因组。例如,弦理论所预测的可能宇宙的数目高达10的500次方。

21. 是否存在多重宇宙?

多重宇宙,这个令人联想翩翩的概念,实际上是一些最受推崇的理论所预言的,例如:由于暴胀模型在某些方面的不足之处,使许多人认为“永恒暴胀”的设想是极有可能的。在这种设想下,由于新的宇宙会不断地从旧的产生,从而导致宇宙的数量不断的增加。

○ 循环宇宙?| 图片来源:Claus Lunau

未来,更多精确的观测将有助于我们对众多模型进行筛选和排除,但可以肯定的是,一个好的预测肯定需要涉及在引力、粒子物理学和宇宙演化上做出根本性的突破。

24. 引力的起源之谜

本质上来说,所有的统一理论(比如大统一、超对称等),都假设了局域洛伦兹不变性(即爱因斯坦的相对论),而非尝试去解释它。Sakharov和其他人试图从真空能量或其他形式的度量弹性中推导出引力,但这些努力都不具有说服力。在费曼等人的早期研究中,从弦理论中推导的引力为自旋为2的场。但问题是弦理论、它的场和它的作用量(action)都是从哪里来的,而且这类思路(如弦理论本身)还并未得到广泛的接受。所以引力的根本来源也是一个未知的大问题。

○ 铷原子形成玻色-爱因斯坦凝聚的过程。红色代表凝聚较少的区域,白色则代表非常密集的区域。| 图片来源:NIST/JILA/CU-Boulder

30. 有哪些新的拓扑相等待被发现?

继 Kosterlitz-Thouless 相变、以及整数和分数量子霍尔效应的发现后,拓扑绝缘体是近年来令人惊喜意外的发现。拓扑绝缘体是一种表面导电但内部绝缘的材料。目前,物理学家提出了许多与凝聚态物质系统中的其他拓扑非平凡相和物体有关的理论。

34. 量子光学和光子学的未来是什么?

光子、电子在基于光子学的新技术(包括光电子学)中起着重要的作用。该领域的前沿研究涉及到更短的激光脉宽、更高的强度、先前无法企及的波长辐射、量子现象的控制以及更多新兴思想的涌现。什么样的新现象会伴随光子、或光子与电子以及其他粒子一起被发现呢?

V. 突破极限篇

35. 理论、计算、实验和观测上的技术的极限是什么?

理论:高能物理中的大部分计算都是基于微扰方法的,例如用费图表示的扩展方式。现有的用于实际计算的非微扰技术主要是数值计算,其中最有名的方法是点阵规范理论。但实质上所有用于实际系统的数值方法对计算机的计算时间和内存需求都会迅速增长,并且如何确保收敛性和准确性也并非一件显而易见的事。一个重大的突破将是发现能准确计算出真实系统的重要属性和过程的非微扰技术。

实验:在高能物理学中,更高能量的研究需要重大的创新,才能实现像μ子对撞机、线性〜0.5TeV 电子对撞机、光子对撞机或庞大的强子对撞机,或许最终我们也将实现〜100 TeV的质子对撞。这些实验对实验装置都有着极高的要求。其他的基础实验,如暗物质的直接探测、中微子物理等,都将需要采用越来越大的实验系统。技术创新将有助于让这些实验得以实现,对灵敏度的增加便是其中一项。

计算:计算正迅速与理论和实验比肩,成为支撑物理学研究的第三支柱,而这三个领域中的突破对物理学来说都是同等重要的。现实的模拟在技术上也变得越来越重要。天体物理学中的重要现象常常因自由度过大而无法进行更真实的模拟,这种情况下,对根本性的计算创新的需求或许迫在眉睫。除物理以外,其他科学技术领域对计算的需求也越来越迫切,也只有计算机科学才能产生更优更强的算法。

观测:在过去的100年之中,天文学家观测到了宇宙中的许多奇异现象。从电磁波的各个频段、到中微子天文学、引力波天文学,都是天文学家用来探索宇宙的工具。这两年对引力波的成功探测为我们了解宇宙开辟了一个新的窗口,去年对双子星合并的观测,更是令人惊喜地开启了多信使时代。天文物理学中的许多不解之谜,或许都可借助更先进的技术和更复杂的观测方法得到解答。

36. 化学、应用物理和科技的最终极限是什么?

无机过程(例如地质学)产生的物质的多样性是很令人称奇的,虽然在生物系统中被开发的物质数量仍大得多。目前来看,我们可以自己设计的化学系统的复杂性似乎没有上限。如果能够将过去两个世纪人类的发现延伸到下个一百万年、甚至上亿年之后,那么什么样的技术是能彻底改变我们后代生活的呢?人工智能算得上是其中一个,它可以以计算机形态(基于经典比特)、或人类形态(基于神经元连接)、亦或是完全未知的形态(例如基于量子状态)存在。我们的后代将如何利用所有的新兴技术?

VI. 生命篇

许多人都听过那只世界上最神秘莫测的猫——薛定谔猫,它是由对量子力学做出杰出贡献的物理学家薛定谔(Erwin Schrodinger)提出的一个思想实验。但薛定谔实际上还有一个非常有意思的工作,是他在1944年基于在都柏林的一系列讲座撰写的一个薄薄的书《什么是生命?》。这本书在DNA的双螺旋结构还未被发现时就预测了DNA的一些重要性质。薛定谔准确地认识到,生物的进化和代与代之间的信息传递的关键是“非周期晶体”——一个永远不会完全重复的原子链。尽管链中的每个链接都含有相同的原子(碳、氮、氧、氢和磷),但它们的不同组合可编码大量的信息。

37. 什么是生命?

自薛定谔完成《什么是生命》一书以来,74年过去了,科学家为了解生命如何运作已经走过了一条很漫长的道路,但直至今日,对于生命是什么我们仍没有一个明确的定义。进化是其中的一部分,因为它是与遗传信息的代代相传相关的概念。新陈代谢是其中的一部分,以一种特有的方式改变其环境中的化学平衡。但是,在明显的非生命和生物之间,是一大片难以定义的灰色地带。

病毒就是一种介于生命与非生命物种之间的物种,因为一方面它们不能自行复制;另一方面当有正常活细胞供它们使用时,就可进行非常高效的传播。这是一个在薛定谔年代就为人所知的事实,而这一问题在70多年后的今天变得更加宽泛。是否存在基于外来生物化学的生命形式?它们或许根本不以DNA为中心分子结构?又或者甚至不以碳为中心元素。或许目前于我们而言是未知的原理,能在其他系外行星上产生完全陌生的生命形式。

38. 地球上的生命是如何开始的?又是如何演化出复杂的生命形式?

地球形成于太阳系早期。许多证据证明地球上的生命经历过两个主要阶段。首先是单细胞原核生物,再接着是多细胞的真核生物。这些简单的单细胞经过漫长的岁月,形成了复杂的生物,例如人。这是个非常令人惊叹的过程。

人们对地球上的生命起源进行过非常多的讨论和研究,因此有许多不同理论,但并没有哪种理论特别令人信服。其中的一个关键问题就在于,开启地球生命的第一个有机分子是完完全全原生于地球的,还是始于其他地方再以某种方式被带入地球的?根据实验和基因分析,科学家们认为地球生命最后的共同祖先,约生活在海底的深海热液口附近。由于地球上的所有生命形式都是从这个遥远的祖先演化而来,所以它们都有一些共同的属性和分子,如DNA。

另一个同样重要的问题是,单细胞的前体是如何变成复杂生物的?由 Lynn Margulis 提出了一个现已被广泛接受的思想:即真核细胞中的线粒体和叶绿体曾经都是独立的细菌。在那样的情况下,生命将仅限于单细胞细菌,而古细菌(原核生物)则不能与细菌共生合并,最终导致了真核生物的出现。

○ 在NASA的艾姆斯研究中心悬挂的一幅壁画中描述了地球上生命的出现。|图片来源:NASA Ames Research Center

39. 生命在宇宙中有多普遍?

在过去20多年中,人类发现了数以千计的系外行星,其中少数几个星球或许可作为宜居星球。从概率角度来看,这是否意味着宇宙中的许多地方或许都存在生命呢?毕竟在可观测宇宙内就已经有数以万亿的星系,且每个星系中又有数以千亿的恒星。

在宇宙138亿年的历史长河中,其他的生命都在哪里呢?或许更高级的智慧生命倾向于不与文明程度较低的生命接触,又或者高级智慧生物因发展出危险的科学技术而导致了自身的灭亡。还有一种可能性就是高等智慧生物出现的可能性本来就极其的低,因为在进化成高等智慧生物的过程中所面临的障碍实在太多了。

40. 生物为何能完成那些复杂到不可能的任务?

生物有两项特别值得骄傲的能力:一个是蛋白质折叠,也就是蛋白质链形成具有正确生物功能结构的过程;另一个是形态发生,即在一个初级单细胞增殖成一个完整的有机体过程中,让分化细胞形成像眼睛、心脏、大脑等复杂结构的能力。这两种能力是非常复杂的,绝非任何计算机能模拟或复制。目前我们仍不能解开生物为何能具有如此复杂能力的奥秘。

41. 我们能够理解并攻克那些威胁生命的疾病吗?

几乎任何器官的生物途径都是错综复杂的,我们掌握的只是其中的一部分。其研究难度在于未知的自由度过大,并且个体与个体之间的差异无法逾越,因此我们不禁想问,人类对疾病根源的探索究竟能走多远?对它的研究需要依靠的是临床实验,还是理论系统生物学的突破?

42. 什么是意识?

我们与现实之间的直接接触都是通过自身对外界的体验,科学认为这些体验都来自于大脑内的神经元结构,越来越多用于进行神经科学研究的工具可对大脑的信息做更深层准确的探索。

据研究发现,不同的心理过程能激发大脑中不同的部位,但是科学家仍搞不清楚的是与意识相关的自理过程。其中最主要的问题是,科学家还无法确定意识的形成是与大脑中的某单一区域还是多区域有关。另一个重大问题是由意识引发的我们能够感受到的真实体验,受到了怎样的物理系统的支持?如何才能判断另一个人的体验是否与我们相同?常规的图灵试验并不足以为我们提供这些问题的答案。

上面的42个基本问题便是许多科学家日夜奋斗想要解开的谜题,有很多问题看起来似乎没有实际的应用,因为科学家所追求的只是更好的理解自然。正如霍金在《时间简史》中写道:“自文明开始以来,人们不满足于将事件看做互无关联,且不可理解。他们渴望理解世界的根本秩序。今天,我们仍然很想知道,我们为何在此?我们从何而来?人类求知的最深切的意愿足以为我们从事的不断探索提供充足的理由。我们的目标恰恰正是对于我们生存其中的宇宙作出完整的描述。”

注:本文主要参考了文献[1]和[2],并尽量进行了更简易的描述,任何深入的探讨皆有大量的文献可以参考。从这些文献中你也可以发现许多相关的其它问题,而不仅限于本文中的42个。比如在文献[7]中,就有许多跟引力相关的未解之谜。对数学物理感兴趣的读者,强烈推荐阅读文献[8],论文中主要讨论了跟经典广义相对论、量子领域和宇宙学相关的开放问题,同时也讨论了著名的希尔伯特问题、斯梅尔问题、西蒙问题、彭罗斯问题以及千禧年大奖问题。

参考文献:

[1] http://iopscience.iop.org/article/10.1088/0031-8949/92/1/012501/meta

[2] http://iopscience.iop.org/article/10.3367/UFNe.0179.200905d.0525/meta

[3] https://arxiv.org/pdf/1708.03040.pdf

[4] https://arxiv.org/abs/1205.3365v1

[5] http://www.dwc.knaw.nl/DL/publications/PU00012213.pdf

[6] https://www.quantamagazine.org/physicists-aim-to-classify-all-possible-phases-of-matter-20180103/

[7] https://arxiv.org/pdf/1704.04386.pdf

[8] http://iopscience.iop.org/article/10.1088/1402-4896/aa83c1/meta

0
点赞
赏礼
赏钱
0
收藏
免责声明:本文仅代表作者个人观点,与思量岛无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非思量岛)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对 其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
QQ:617470285 邮箱:info@siliangdao.com
关于作者
黛末(千里马)
点击领取今天的签到奖励!
签到排行
0
0
分享
请选择要切换的马甲:

个人中心

每日签到

我的消息

内容搜索